A fundamental Precambrian–Phanerozoic shift in earth’s glacial style?
نویسنده
چکیده
It has recently been found that Neoproterozoic glaciogenic sediments were deposited mainly at low paleolatitudes, in marked qualitative contrast to their Pleistocene counterparts. Several competing models vie for explanation of this unusual paleoclimatic record, most notably the high-obliquity hypothesis and varying degrees of the snowball Earth scenario. The present study quantitatively compiles the global distributions of Miocene–Pleistocene glaciogenic deposits and paleomagnetically derived paleolatitudes for Late Devonian–Permian, Ordovician–Silurian, Neoproterozoic, and Paleoproterozoic glaciogenic rocks. Whereas high depositional latitudes dominate all Phanerozoic ice ages, exclusively low paleolatitudes characterize both of the major Precambrian glacial epochs. Transition between these modes occurred within a 100-My interval, precisely coeval with the Neoproterozoic–Cambrian ‘‘explosion’’ of metazoan diversity. Glaciation is much more common since 750 Ma than in the preceding sedimentary record, an observation that cannot be ascribed merely to preservation. These patterns suggest an overall cooling of Earth’s longterm climate, superimposed by developing regulatory feedbacks involving an increasingly complex biosphere. D 2003 Elsevier B.V. All rights reserved.
منابع مشابه
Carbon and Climate System Coupling on Timescales from the Precambrian to the Anthropocene*
Over a range of geological and historical timescales, warmer climate conditions are associated with higher atmospheric levels of CO2, an important climate-modulating greenhouse gas. Coupled carbonclimate interactions have the potential to introduce both stabilizing and destabilizing feedback loops into Earth’s system. Here we bring together evidence on the dominant climate, biogeochemical and g...
متن کاملContrasting styles of Phanerozoic and Precambrian continental collision
a r t i c l e i n f o There are differences in the style of collisional orogens between the Phanerozoic and the Precambrian, most notably the appearance of blueschists and ultrahigh pressure metamorphic (UHPM) rocks in the geological record since the late Neoproterozoic, whereas these rocks are absent from older orogens. Understanding collisional orogenesis in the context of present-day values ...
متن کاملNeoproterozoic glacial palaeolatitudes: a global update
New stratigraphic, geochronological and palaeomagnetic constraints allow updates to be made to a synthesis of Neoproterozoic glacial palaeolatitudes, including modifications to some reliability estimates. The overall pattern of a Neoproterozoic climatic paradox persists: there is an abundance of tropical palaeolatitudes and near to complete absence of glaciogenic deposits demonstrably laid down...
متن کاملPaleomagnetic Constraints on Neoproterozoic ‘Snowball Earth’ Continental Reconstructions
The Neoproterozoic glacial intervals represent one of the most curious expressions of Earth’s climate. Despite the popularity of the hard “Snowball” hypothesis in the popular press, the scientific community remains divided over the extent of the Neoproterozoic glaciations, the age of the glaciations, the number of glacial events and the triggering mechanism for the glaciations. A major, and yet...
متن کاملThe Neoproterozoic
The Neoproterozoic era was arguably the most revolutionary in Earth history. Extending from 1000 to 541 million years ago, it stands at the intersection of the two great tracts of evolutionary time: on the one side, some three billion years of pervasively microbial 'Precambrian' life, and on the other the modern 'Phanerozoic' biosphere with its extraordinary diversity of large multicellular org...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003